Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36145492

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of neonatal infections. Yet, detailed assessment of the genotypic and phenotypic factors associated with GBS carriage, mother-to-baby transmission, and GBS infection in neonates and adults is lacking. Understanding the distribution of GBS genotypes, including the predominance of different serotypes, antimicrobial resistance (AMR) genes, and virulence factors, is likely to help to prevent GBS diseases, as well as inform estimates of the efficacy of future GBS vaccines. To this end, we set out to characterise GBS isolates collected from pregnant and non-pregnant women in Kaunas region in Lithuania. Whole genome sequences of 42 GBS isolates were analysed to determine multi-locus sequence typing (MLST), the presence of acquired AMR and surface protein genes, and the phylogenetic relatedness of isolates. We identified serotypes Ia (42.9%, 18/42), III (33.3%, 14/42), V (21.4%, 9/42), and a single isolate of serotype Ib. Genomic analyses revealed high diversity among the isolates, with 18 sequence types (STs) identified, including three novel STs. 85.7% (36/42) of isolates carried at least one AMR gene: tetM or tetO (35/42), ermB or lsaC (8/42) and ant6-Ia and aph3-III (2/42). This study represents the first genomic analysis of GBS isolated from women in Lithuania and contributes to an improved understanding of the global spread of GBS genotypes and phenotypes, laying the foundations for future GBS surveillance in Lithuania.

2.
J Bacteriol ; 204(4): e0003122, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357162

RESUMO

The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54's role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...